Sains Malaysiana 52(11)(2023): 3307-3323

http://doi.org/10.17576/jsm-2023-5211-21

 

Carbon Quantum Dots Coupled Au Nanoparticle as Fluorescence-Based DNA Biosensors for Dengue Virus Detection

(Titik Kuantum Karbon Digandingkan Au Nanozarah Berasaskan Pendarfluor Biosensor DNA untuk Pengesanan Virus Denggi)

 

YAKUBU NEWMAN MONDAY1,4, JAAFAR ABDULLAH1,2,*, NOR AZAH YUSOF1,2, SURAYA ABDUL RASHID2, RAFIDAH HANIM SHUEB3 & HAMIDAH SIDEK5

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
4Department of Chemistry, Faculty of Science, Federal University Lokoja, P.M.B 1154, Lokoja, Kogi State, Nigeria

5Industrial Centre of Innovation in Sensor, SIRIM Berhad, No.1, Persiaran DatoMenteri, Section 2, P.O. Box 7035, 40700 Shah Alam, Selangor, Malaysia

 

Diserahkan: 9 Ogos 2023/Diterima: 1 Disember 2023

 

Abstract

This study introduces a novel DNA biosensor probe comprising carbon quantum dots (CQDs) derived from palm kernel shell biomass and gold nanoparticles (AuNPs) synthesized via the citrate reduction method. The CQDs were doped with ethylenediamine using a hydrothermal process employing a one-pot synthesis method in an autoclave batch reactor. The resulting CQDs exhibited exceptional photoluminescent (PL) properties, with an excitation wavelength of 360 nm and an emission wavelength of 430 nm. Transmission electron microscope (TEM) images showed the average particle sizes of the CQDs and AuNPs to be 2 nm and 15 nm, respectively. Carboxylic acid-modified CQDs were coupled to amine-modified ssDNA (PA) to construct the biosensor through the amine coupling technique. The AuNPs were modified through thiol coupling with Rhodamine B, L-cysteine, and thiol-modified ssDNA (PT). Both PA and PT probes were designed to complement the DEN-3 virus oligonucleotide. CQDs acted as fluorophores and energy donors in the biosensor, while the AuNPs functioned as nanoquenchers of fluorophores and energy acceptors. The resulting probe pair, CQDs-PA, and AuNPs-PT demonstrated remarkable Förster resonance energy transfer (FRET) and exhibited fluorescence turn-on upon titration with DEN-3. The biosensor displayed excellent sensitivity with a logarithmic calibration equation of 5.22LogC + 20.79 (R2 = 0.979), covering a linear range of 0.001 nM to 100 nM. The limit of detection (LOD) was determined to be 1.57 ± 0.71 nM. This innovative DNA biosensor, incorporating CQDs and AuNPs, holds promising potential for sensitive and specific detection of the DEN-3 virus.

 

Keywords: Carbon quantum dots; dopants; FRET; palm kernel shell; quantum yield

 

Abstrak

Kajian ini memperkenalkan prob biosensor DNA baharu yang terdiri daripada titik kuantum karbon (CQD) yang diperoleh daripada biojisim tempurung isirong sawit dan nanozarah emas (AuNPs) yang disintesis melalui kaedah penurunan sitrat. CQD telah didop dengan etilenadiamina menggunakan proses hidroterma kaedah sintesis satu periuk dalam reaktor kelompok autoklaf. CQD yang terhasil menunjukkan sifat fotoluminesen (PL) yang luar biasa, dengan panjang gelombang pengujaan 360 nm dan panjang gelombang pancaran 430 nm. Imej mikroskop elektron penghantaran (TEM) menunjukkan purata saiz zarah CQD dan AuNP masing-masing adalah 2 nm dan 15 nm. CQD yang diubah suai asid karboksilik digabungkan dengan ssDNA (PA) yang diubah suai amina untuk membina biosensor melalui teknik gandingan amina. AuNPs telah diubah suai melalui gandingan tiol dengan Rodamina B, L-cisteina dan ssDNA (PT) yang diubah suai tiol. Kedua-dua prob PA dan PT direka untuk melengkapkan oligonukleotida virus DEN-3. CQD bertindak sebagai fluorofor dan penderma tenaga dalam biosensor manakala AuNP berfungsi sebagai nano-pelindapkejut fluorofor dan penerima tenaga. Pasangan prob yang terhasil, CQDs-PA dan AuNPs-PT menunjukkan pemindahan tenaga resonans Förster (FRET) yang luar biasa dan menunjukkan pendarfluor hidup semasa pentitratan dengan DEN-3. Biosensor memaparkan kepekaan yang sangat baik dengan persamaan penentukuran logaritma 5.22LogC + 20.79 (R2 = 0.979), meliputi julat linear 0.001 nM hingga 100 nM. Had pengesanan (LOD) ditentukan sebagai 1.57 ± 0.71 nM. Biosensor DNA yang inovatif ini menggabungkan CQD dan AuNP, berpotensi untuk pengesanan sensitif dan khusus virus DEN-3.

 

Kata kunci: Dopan; FRET; hasil kuantum; tempurung isirong sawit; titik kuantum karbon

 

RUJUKAN

Adegoke, O. & Park, E.Y. 2017. Bright luminescent optically engineered core/alloyed shell quantum dots: An ultrasensitive signal transducer for dengue virus RNA via localized surface plasmon resonance-induced hairpin hybridization. Journal of Materials Chemistry B 5(16): 3047-3058. https://doi.org/10.1039/c7tb00388a

Bajpai, S.K., D’Souza, A. & Suhail, B. 2019. Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with Spinacia oleracea leaf cells. International Nano Letters 9(3): 203-212. https://doi.org/10.1007/s40089-019-0271-9

Bhamore, J.R., Jha, S., Singhal, R.K., Park, T.J. & Kailasa, S.K. 2018a. Facile green synthesis of carbon dots from Pyrus pyrifolia fruit for assaying of Al3+ ion via chelation enhanced fluorescence mechanism. Journal of Molecular Liquids 264(2017): 9-16. https://doi.org/10.1016/j.molliq.2018.05.041

Bhamore, J.R., Jha, S., Park, T.J. & Kailasa, S.K. 2018b. Fluorescence sensing of Cu2+ ion and imaging of fungal cell by ultra-small fluorescent carbon dots derived from Acacia concinna seeds. Sensors and Actuators, B: Chemical 277: 47-54. https://doi.org/10.1016/j.snb.2018.08.149

Bhattacharya, D., Mishra, M.K. & De, G. 2017. Carbon dots from a single source exhibiting tunable luminescent colors through the modification of surface functional groups in ORMOSIL films. Journal of Physical Chemistry C 121(50): 28106-28116. https://doi.org/10.1021/acs.jpcc.7b08039

Chowdhury, A.D., Takemura, K., Khorish, I.M., Nasrin, F., Tun, M.M.N., Morita, K. & Park, E.Y. 2020. The detection and identification of dengue virus serotypes with quantum dot and AuNP regulated localized surface plasmon resonance. Nanoscale Advances 2(2): 699-709. https://doi.org/10.1039/c9na00763f

Darwish, N.T., Yatimah, B.A. & Khor, S.M. 2015. An introduction to dengue-disease diagnostics. Trends in Analytical Chemistry 67: 45-55. https://doi.org/10.1016/j.trac.2015.01.005

De, B. & Karak, N. 2013. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances 3(22): 8286-8290. https://doi.org/10.1039/c3ra00088e

Dong, W., Zhou, S., Dong, Y., Wang, J., Ge, X. & Sui, L. 2015. The preparation of ethylenediamine-modified fluorescent carbon dots and their use in imaging of cells. Luminescence 30(6): 867-871. https://doi.org/10.1002/bio.2834

Draz, M.S. & Shafiee, H. 2018. Applications of gold nanoparticles in virus detection. Theranostics 8(7): 1985-2017. https://doi.org/10.7150/thno.23856

Du, F., Zhang, M., Li, X., Li, J., Jiang, X., Li, Z., Hua, Y., Shao, G., Jin, J., Shao, Q., Zhou, M. & Gong, A. 2014. Economical and green synthesis of bagasse-Derived fluorescent carbon dots for biomedical applications. Nanotechnology 25(31): 315702. https://doi.org/10.1088/0957-4484/25/31/315702

E. Alahi, M.E. & Mukhopadhyay, S.C. 2017. Detection methodologies for pathogen and toxins: A review. Sensors (Switzerland) 17(8): 1885. https://doi.org/10.3390/s17081885

Gao, T., Xing, S., Xu, M., Fu, P., Yao, J., Zhang, X., Zhao, Y. & Zhao, C. 2020. A peptide nucleic acid–Regulated fluorescence resonance energy transfer DNA assay based on the use of carbon dots and gold nanoparticles. Microchimica Acta 187(7): 375. https://doi.org/10.1007/s00604-020-04357-w

Gao, Y., Zhu, Z., Xi, X., Cao, T., Wen, W., Zhang, X. & Wang, S. 2019. An aptamer-based hook-effect-recognizable three-line lateral flow biosensor for rapid detection of thrombin. Biosensors and Bioelectronics 133: 177-182. https://doi.org/10.1016/j.bios.2019.03.036

Gedda, G., Lee, C.Y., Lin, Y.C. & Wu, H.F. 2016. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sensors and Actuators, B: Chemical 224: 396-403. https://doi.org/10.1016/j.snb.2015.09.065

Gosink, J. 2014. Early laboratory diagnosis of dengue infections. Medlab Magazine 3: 014-016.

Guerrini, L., Alvarez-Puebla, R.A. & Pazos-Perez, N. 2018. Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel) 11(7): 1154. https://doi.org/10.3390/ma11071154

Hamd-Ghadareh, S. & Salimi, A. 2019. DNA-functionalized dye-loaded carbon dots: Ultrabright FRET platform for ratiometric detection of Hg(II) in serum samples and cell microenvironment. Ionics 25(9): 4469-4479. https://doi.org/10.1007/s11581-019-02999-2

Hoan, B.T., Tam, P.D. & Pham, V-H. 2019. Green synthesis of highly luminescent carbon quantum dots from lemon juice. Journal of Nanotechnology 2019: 2852816. https://doi.org/10.1155/2019/2852816

Jahwarhar Izuan Abdul Rashid & Nor Azah Yusof. 2018. Laboratory diagnosis and potential application of nucleic acid biosensor approach for early detection of dengue virus infections. Biosciences, Biotechnology Research Asia 15(2): 245-255. https://doi.org/10.13005/bbra/2628

Laverdant, J., de Marcillac, W.D., Barthou, C., Chinh, V.D., Schwob, C., Coolen, L., Benalloul, P., Nga, P.T. & Maitre, A. 2011. Experimental determination of the fluorescence quantum yield of semiconductor nanocrystals. Materials 4(7): 1182-1193. https://doi.org/10.3390/ma4071182

Li, L., Li, L., Chen, C.P. & Cui, F. 2017. Green synthesis of nitrogen-doped carbon dots from ginkgo fruits and the application in cell imaging. Inorganic Chemistry Communications 86: 227-231. https://doi.org/10.1016/j.inoche.2017.10.006

Ma, X., Li, S., Hessel, V., Lin, L., Meskers, S. & Gallucci, F. 2019. Synthesis of luminescent carbon quantum dots by microplasma process. Chemical Engineering and Processing - Process Intensification 140: 29-35. https://doi.org/10.1016/j.cep.2019.04.017

Muhammad Mailafiya, M., Abubakar, K., Danmaigoro, A., Chiroma, S.M., Abdul Rahim, E.B., Mohd Moklas, M.A. & Zakaria, Z.A.B. 2019. Evaluation of in vitro release kinetics and mechanisms of curcumin-loaded cockle shell-derived calcium carbonate nanoparticles. Biomedical Research and Therapy 6(12): 3518-3540. https://doi.org/10.15419/bmrat.v6i12.580

Nasrin, F., Chowdhury, A.D., Takemura, K., Lee, J., Adegoke, O., Deo, V.K., Abe, F., Suzuki, T. & Park, E.Y. 2018. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosensors and Bioelectronics 122: 16-24. https://doi.org/10.1016/j.bios.2018.09.024

Noremylia Mohd Bakhori, Nor Azah Yusof, Abdul Halim Abdullah & Mohd Zobir Hussein. 2013. Development of a fluorescence resonance energy transfer (FRET)-Based DNA biosensor for detection of synthetic oligonucleotide of Ganoderma boninense. Biosensors 3(4): 419-428. https://doi.org/10.3390/bios3040419

Nur Alia Sheh Omar, Yap Wing Fen, Jaafar Abdullah, Yasmin Mustapha Kamil, Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Amir Reza Sadrolhosseini & Mohd Adzir Mahdi. 2020. Sensitive detection of dengue virus Type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor. Scientific Reports 10(1): 1-15. https://doi.org/10.1038/s41598-020-59388-3

Nur Alia Sheh Omar, Yap Wing Fen, Jaafar Abdullah, Che Engku Noramalina Che Engku Chik & Mohd Adzir Mahdi. 2018. Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein. Sensing and Bio-Sensing Research 20: 16-21. https://doi.org/10.1016/j.sbsr.2018.06.001

Plennevaux, E., Sabchareon, A., Limkittikul, K., Chanthavanich, P., Sirivichayakul, C., Moureau, A., Boaz, M., Wartel, T.A., Saville, M. & Bouckenooghe, A. 2016. Detection of dengue cases by serological testing in a dengue vaccine efficacy trial: Utility for efficacy evaluation and impact of future vaccine introduction. Vaccine 34(24): 2707-2712. https://doi.org/10.1016/j.vaccine.2016.04.028

Pudza, M.Y., Abidin, Z.Z., Abdul-Rashid, S., Md Yassin, F., Noor, A.S.M. & Abdullah, M. 2019. Synthesis and characterization of fluorescent carbon dots from tapioca. ChemistrySelect 4(14): 4140-4146. https://doi.org/10.1002/slct.201900836

Rashid, J.I.A., Yusof, N.A., Abdullah, J., Hashim, U. & Hajian, R. 2015. A novel disposable biosensor based on SiNWs/AuNPs modified-screen printed electrode for dengue virus DNA oligomer detection. IEEE Sensors Journal 15(8): 4420-4421. https://doi.org/10.1109/JSEN.2015.2417911

Sabzehparvar, F., Cherati, T.R., Mohsenifar, A., Shojaei, T.R. & Tabatabaei, M. 2019. Immobilization of gold nanoparticles with rhodamine to enhance the fluorescence resonance energy transfer between quantum dots and rhodamine; New method for downstream sensing of infectious bursal disease virus. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 212: 173-179. https://doi.org/10.1016/j.saa.2018.12.050

Saheeda, P., Sabira, K., Joseph, J. & Jayaleksmi, S. 2019. On the intriguing emission characteristics of size tunable carbon dots derived from functionalized multi-walled carbon nanotubes. Materials Chemistry and Physics 225: 8-15. https://doi.org/10.1016/j.matchemphys.2018.11.062

Samsulida Abdul Rahman, Rafidah Saadun, Nur Ellina Azmi, Nurhayati Ariffin, Jaafar Abdullah, Nor Azah Yusof, Hamidah Sidek & Reza Hajian. 2014. Label-free dengue detection utilizing PNA/DNA hybridization based on the aggregation process of unmodified gold nanoparticles. Journal of Nanomaterials 2014: 839286. https://doi.org/10.1155/2014/839286

Segal, L. & Eggerton, F.V. 1961. Infrared spectra of ethylenediamine and the dimethylethylenediamines. Applied Spectroscopy 15(4): 116-117. https://doi.org/10.1366/000370261774426939

Sentürk, E., Aktop, S., Sanlibaba, P. & Tezel, B.U. 2018. Biosensors: A novel approach to detect food-borne pathogens. Applied Microbiology: Open Access 4(3): 4-11. https://doi.org/10.4172/2471-9315.1000151

Shamsipur, M., Nasirian, V., Mansouri, K., Barati, A., Veisi-Raygani, A. & Kashanian, S. 2017. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. Journal of Pharmaceutical and Biomedical Analysis 136: 140-147. https://doi.org/10.1016/j.jpba.2017.01.002

Shojaei, T.R., Mohd Salleh, M.A., Sijam, K., Abdul Rahim, R., Mohsenifar, A., Safarnejad, R. & Tabatabaei, M. 2016. Detection of citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 169: 216-222. https://doi.org/10.1016/j.saa.2016.06.052

Shrivastava, A. & Gupta, V.B. 2011. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists 2(1): 21-25. https://doi.org/10.4103/2229-5186.79345

Shylesh, Sankaranarayanapillai, Alex Wagener, Andreas Seifert, Stefan Ernst, and Werner R Thiel. 2010. Mesoporous organosilicas with acidic frameworks and basic sites in the pores: An approach to cooperative catalytic reactions. Angewandte Chemie (International Edition) 49(1): 184-187. https://doi.org/10.1002/anie.200903985

Stefanakis, D., Philippidis, A., Sygellou, L., Filippidis, G., Ghanotakis, D. & Anglos, D. 2014. Synthesis of fluorescent carbon dots by a microwave heating process: Structural characterization and cell imaging applications. Journal of Nanoparticle Research 16(10): Article No. 2646. https://doi.org/10.1007/s11051-014-2646-1

Sun, L-H., Wang, S., Shi, W-L., Zhang, S., Chen, X. & Cai, Q. 2012. A new type of anionic surfactant with four carboxylates for the preparation of mesoporous materials. Frontiers of Materials Science 6(3): 268-277. https://doi.org/10.1007/s11706-012-0173-5

Sun, X., Xing, Z., Ning, R., Asiri, A.M. & Obaid, A.Y. 2014. Carbon nanobelts as a novel sensing platform for fluorescence-enhanced DNA detection. Analyst 139(10): 2318-2321. https://doi.org/10.1039/c3an02364h

Suria Mohd Saad, Jaafar Abdullah, Suraya Abd Rashid, Yap Wing Fen, Faridah Salam & Lau Han Yih. 2020. A carbon dots based fluorescence sensing for the determination of Escherichia coli O157:H7. Measurement: Journal of the International Measurement Confederation 160: 107845. https://doi.org/10.1016/j.measurement.2020.107845

Tseng, M-H., Hu, C-C. & Chiu, T-C. 2019. A fluorescence turn-on probe for sensing thiodicarb using rhodamine b functionalized gold nanoparticles. Dyes and Pigments 171: 107674. https://doi.org/10.1016/j.dyepig.2019.107674

Wang, J. & Qiu, J. 2016. A review of carbon dots in biological applications. Journal of Materials Science 51(10): 4728-4738. https://doi.org/10.1007/s10853-016-9797-7

Wang, J., Zhang, P., Huang, C., Liu, G., Leung, K.C.F. & Wáng, Y.X.J. 2015. High performance photoluminescent carbon dots for in vitro and in vivo bioimaging: Effect of nitrogen doping ratios. Langmuir 31(29): 8063-8073. https://doi.org/10.1021/acs.langmuir.5b01875

Wasik, D., Mulchandani, A. & Yates, M.V. 2018. Salivary detection of dengue virus NS1 protein with a label-free immunosensor for early dengue diagnosis. Sensors (Switzerland) 18(8): 1-10. https://doi.org/10.3390/s18082645

WHO. 2018. Dengue Vaccines: WHO Position September 2018. Weekly Epidemiological Record 93 (36): 457-476. https://www.who.int/immunization/policy/position_papers/who_pp_dengue_2018_summary.pdf?ua=1

Wu, P., Li, W., Wu, Q., Liu, Y. & Liu, S. 2017. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment. RSC Advances 7(70): 44144-44153. https://doi.org/10.1039/c7ra08400e

Xiao, Q., Chen, M., Nie, W., Xie, F., Yu, X. & Ma, C. 2023. A fluorescent biosensor for streptavidin detection based on double-hairpin DNA-templated copper nanoparticles. Biosensors 13(2): 168. https://doi.org/10.3390/bios13020168

Yakubu, N.M., Abdullah, J., Yusof, N.A., Abdul Rashid, S. & Shueb, R.H. 2021. Facile hydrothermal and solvothermal synthesis and characterization of nitrogen-doped carbon dots from palm kernel shell precursor. Applied Science 11(4): 1630. https://doi.org/https://doi.org/10.3390/app11041630

Yan, B., Wang, F., He, S., Liu, W., Zhang, C., Chen, C. & Lu, Y. 2022. Peroxidase-like activity of Ru–N–C nanozymes in colorimetric assay of acetylcholinesterase activity. Analytica Chimica Acta 1191: 339362. https://doi.org/10.1016/j.aca.2021.339362

Yang, G., Li, L., Lee, W.B. & Ng, M.C. 2018. Structure of graphene and its disorders: A review. Science and Technology of Advanced Materials 19(1): 613-648. https://doi.org/10.1080/14686996.2018.1494493

Yang, R., Guo, X., Jia, L., Zhang, Y., Zhao, Z. & Lonshakov, F. 2017. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging. Applied Surface Science 423: 426-432. https://doi.org/10.1016/j.apsusc.2017.05.252

Yang, Z-C., Wang, M., Yong, A.M., Wong, S.Y., Zhang, X-H., Tan, H., Chang, A.Y., Li, X. & Wang, J. 2011. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chemical Communications 47(42): 11615-11617.

Yin, B., Deng, J., Peng, X., Long, Q., Zhao, J., Lu, Q., Chen, Q., Li, H., Tang, H., Zhang, Y. & Yao, S. 2013. Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138(21): 6551-6557. https://doi.org/10.1039/c3an01003a

Zhou, Y., Desserre, A., Sharma, S.K., Li, S., Marksberry, M.H., Chusuei, C.C., Blackwelder, P.L. & Leblanc, R.M. 2017. Gel-like carbon dots: Characterization and their potential applications. ChemPhysChem 18(8): 890-897. https://doi.org/10.1002/cphc.201700038

Zhang, G. 2013. Functional gold nanoparticles for sensing applications. Nanotechnology Reviews 2(3): 269-288. https://doi.org/10.1515/ntrev-2012-0088

 

*Pengarang untuk surat-menyurat; email: jafar@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya